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Coherence and Chaos in the Kuramoto-Velarde
Equation |

James M. Hyman and Basﬂ Nicolaenko

I. INTRODUCTION v

, In the past deéade, research into the behavior of finite
dimensional dynamical systems has deepened our understanding
of the transition to chaos‘ in dissipative physical models.
Underlying this explosive research field is the belief that
transitions to chaos are generic, low-dimensional phenomena,
even for continuum fluid flows governed by an infinite number
of degrees of freedom. This is the essence of Feigenbaum's
universality theory [19] _

Yet, the fundamental problem remains open: are these
transitions to dynamical chaos a ‘route to fully developed
turbulence in cbmplex fluid flows [2-5, 9-11, 33-34]7? A
growing body of carefully controlled experiments suggests
this is the case {7, 32}, although when critical parameters:
such as the Reynolds number reach even moderate values, the
physical detection of a small set of degrees of freedom is
quickly blurred by statistical experimental noise [30].

Current computer calculations are unable "to accurately

' simulate the full route  to three~dimensional fluid

turbulence. The next generation of supercomputers will have
enough brute force to allow us to glimpse at the details of
the transition to turbulence in the Navier-Stokes equations.
Before they are available, we can study. turbulent phenomena
which can be modeled by one- and two-dimensional scalar

partial differential egquations (PDEs). . In this paper, we
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focus on PDEs that model localized patterns and structures
appearing on interfaces between complex flows. They occur in
quasi-planar flame fronts [4], thin viscous fluid films
flowing over inclined planes, and the dendritic phase change
fronts in binary alloy mixtures [31]. The solution of some
of these models is indistinguishable from the solution of a
finite-dimensional dynamical system.

. In these models, as a critical physical parameter is
varied, ‘a simple laminar solution destabilizes. The .
destabilization is heralded by the cohesive organization of
cells and patterns (often hexagonal) on the moving front or
interface. The turbulence, localized on the interface, is
dominated by fluctuations in the normal direction. = As the
critical parameter is increased, the spatial cells remain
coherent‘:, " yet temporal behavior becomes chaotic. This
behavior has been observed in flame-sheet experiments during
the transition to fully turbulent flames [1].  The
coexistence of spatial coherence with temporal chaos in these
experiments makes them superb candidates for mathematical and
computational testing of the link between deterministic chaos.
[{19] and turbulence.

' Many interfacés with 1localized turbulence, including
flames, can be modeled by the simple Kuramoto-Sivashinsky
(K~s) PDE [26-29, 31]. This equation accurately accounts for
the thermodiffusive and convective ‘mechan_ism of flow-field
. coupling across an interface before turbulence breaks away
from the interface and reaches deeply into the fluid. In one
- space dimension, the K-S equation modeling a  small
perturbation u(x,t) of ‘a metastable planar front or interface
is :

1

, 2 _
U, + vug . F U + %E(ux) =0 , (x,t) €¢ R X R,

‘ ‘ ' (1.1)
u(x,c) = uo(x) , u(x + L) = u(x,t) .

Here the subscripts indicate partial differentiation, v is a
positive fourth-order wviscosity, and u, ‘is L-~periodic; L
being the size of a typical pattern scale. The natural
bifurcation ‘parameter is the renormalized dimensionless
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parameter I = L/(2nyv); [L] is also the number of 1linearly
unstable Fourier modes.

A related model is the Kuramoto-Velarde (K-V) equation
[17]:

+ + +
Up + VU aex + Ugyx + BU

+y@? ssuu - LS mpZa=0 . .2

1]

fr(; ‘u(xlt) dx 0 r

where B,y,8 are positive, B << 1, and with periodic boundary
conditions and  initial conditions with zero mean. The K-V

‘equation models Benard<Marangoni cells. that occur when there

is large surface tension on the interface [35, 36] in a

~ microgravity environment [16, 17]. This situation arises in

crystal growth experlments aboard an orbiting space station.
Although the free 1nterface is metastable with. respect to
small p/erturbations, the nonlinearity 'a(uux)x, not present in
the K-S equation, models pressure destabilization effects
striving to rupture the interface.

Our computer simulations of the K-S equation [24]
demonstrated " an uncanny intermittent, low-dimensional
béhavibr for the values of the bifurcation parameter beyond
the point where the transition to chaos had occurred. Some

\canonical mechanisms for onset of chaos ([19] in classical

dynamical systems are seen amidst complex and lengthy
turbulent time series. In this article, we report on a
similar systematic study of the transition to chaos for the

2

If the eikonal nonlinearity term uy in (1.2) is removed

{y = 0, B 2 0), ‘then:'_‘the' solution of the K-V equation and its

gradients blow up in finite time. We have verified this
numerically and demonstrated it using classical methods
{Ladyshenskala] Furthermore, in our numerical studies we
found that the convectlve term ui_ not only controls blowup in
(2. 6), but also generates chaotlc dynamics gqualitatively
similar to those of K-S. 1In this paper we systematically

search for class:Lcal dynamical systems bz.furcatlons and for
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multiple basins of attractz.ons for the K-V model. As in the
K-S model [24], we have uncovered a rich solution structure
with multiple internal attractors having interlaced basins of
attraction. : :
When we solve chaotic PDEs, the reliability of the
long-term, time-dependent behavior is always in question
until a comprehensive error analysis is performed. In our
computer experiments, we found that the calculated solutions

could be extremely sensitive to the numerical accuracy.

Nonconverged numerical solutions of the K-S and K-V equations

can occur in regimes we are interested in if the time

in_tegration errors are greater than 10~° per unit timestep.

In fact, small effects of the order of 107% in the energy for
some sensitive Fourier modes can critically impact on the
nonlinear dynamics. In the calculations, we used discrete
Fourier transform rpseudospectral approx1matlons to the
spatial derivatives [22] on grids ranging from 64 to 256 mesh
po:Lnts_ "in single precision (14 digits) on a Cray XMP

computer. The solution was integrated in time wusing a
variable order, variable timestep backward differentiation

method [21] that retalned an absolute error tolerance between
10'6 and 10 =10 per unit time. The runs presented here took
between 10 and 105 time-steps. < The implicit equation was
solved on each ,timeStep with a guasi-Newton iterative
algorithm. Because these equations were not solved exactly,
a symmetry—breeking perturbatien was introduced into the
calculation. Many of the current calculations use an
approximate solution operator (ASO) based on finite Fourier
transforms and an exponential trapezoidal rule [23}. The ASO
methodology incorporates analytic information on the behavior
of the solution‘into the numerical approximation.

A typical example of the extreme numerical sensitivity of

-the numerical solutions to the K-S and K-V equations is the

disappearance of homoclinic orbits if the precision is too
low. The saddle-type hyperbolic fixed points degenerate into
numerica'lly stable fixed points with an artificial basin of
attract1on ’the size of the error control. Because of the
artlf:.c:l.ally stable fixed points, our nu_merlcal results of
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the K-S and K-V equations differ from some of the previously
published simulations with only modest control over time
integration errors.

II . OVERVIEW OF COMPUTATIONAL SIMULATIONS AND  THEORETICAL
RESULTS
In our calculations, we normalized'the K-S equation to an
interval of length 2n, set the damping parameter to the
original wvalue derived by Sivashinsky (v = 4), and introduced
the bifurcation parameter o = 4ﬁ2 = L2/4n2:

i N , , 5.

u, + 4uxxxx + « [uxx + g(ux) }] =0 , 0<x<2n , |
(2.1)

u(x +2m,t) = w(x,t) , u(x,0) = u (x) . |

- This equatlon is equ:l.valent to Eg. (1.1) with a different

time scallng. :
The mean value of the solution to Eq. (2.1)

1 2n . _ , : :
m(t) = Sn IO u(x,t)dax. ' o (2.2)

satisfies the,dfift equation

. __:-(1’ 2n 2 o o v
m(t) = zo fo_ (u )™ ax . o A - (2.3)

To normalize this drift to zero, we numérically solved
the drift-free K-S equation for '

3

V(x,t) = u(x,ﬁ) - m(ﬁ) . | _ ' o (274)

That is,
v + 4vxxxx + a[v + k(v ) ] + m(t) =0 . (2.5)

We also normalized the Krvleqnation on [O,Zn] and set
v = 4, ylé Y, 6 =1 (comparable nonlinearities) In most
situations B << 1 and, therefore, for 51mp11c1ty and to allow
a systematlc comparlson with the K-S [24], we consider the
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case B = 0 and define « =VL2/4n2. The drift-free K-V
equation is then B ' ’

32 g
ut * 4uxxxx * c'[uxx f %(ux) + (uux)x]
ax =0 , 0<x<2n , (2.6)

u(x + 2n,t) = u(x,t) -} u(x,0) = u (x) .

we consider only initial values with zero mean. This implies
that there is no cavitation and that the liquid follows the
interfacial motion [16, 17]. ‘

The computational explorations outlined in [24] and here
have spurred efforts to prové that the K-S and K-V equations
are- rigorously equivalent to a finite dynamical system. The
approach (introduced in [12-15]) consists of constructing a
finite dimensional Lifschitz inertial manifold X in the phase
space of the PDE such that

(i) X is invariant and has compact support; that is, if
(S{t, . ))t>0 is the nonlinear semigroup associated w1th the
initial Ghlug problem for the equations, then S(t,zZ) is
contained in X for all t = O. : , ‘

(ii) All solutions converge exponentially to =. In
particular, the universal attractor, X, is included in > and
the dissipative PDE reduces on 3 to a finite dynamical system
(called an inertial ODE).' More details of this structure can
be found in the paper by C. Foias, in these proceedings.

» The existence of such an inertial manifold has been
demonstrated ([6, 14, 15, 29} for the K-S equation with

Neumann boundary condition. In this case the dimension of =
is less than cu1'75, where ¢ is a constant independent of a.
This can be compared with an upper bound for the fractal
dimension of the universal attractor X [28], df(x).g_cao’75).
It has been proven that all solutions of (1.1) with Neumann
boundary conditions converge exponentially, as O(exp—cast),
to the inertial manifold 3. Tﬁus whén a > 1, the solution is
practically on the'Ainertial manifold almost immediately.
This is the essence of the argument -that the K-S equatidn_
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is a paradigm of a PDE equivalent to a finite dynamical
system. ~Similar results ‘hold for the K-V equation
[Nicolaenko, unpublished] and for a model of 2-D weak
turbulence in shear flows [8].

The bifurcation catalogues and diagrams (Figs. 1 and 2),
were created by systematicallvy scanning large intervals in
the bifurcation parameter «. The diagrams for the K-S
equation (Figs. 1b and 2b) are described elsewhere in detail
[24]. while keeping o fixed, we searched for different
attractors by varying the initial conditions. We then
tracked the domains of stability of each ‘attractor with
respect to the bifurcation parameter by varying a and
reinitializing v(x,0) to the final solution from the previous
run with a different a. Many problems were recalculated
several times with different grid resolutions and time
truncation error criteria to ensure that the numerical
solutions were converged within an acceptable accuracy.

A remarkable feature of both the K-S and K-V equations is.
the alternating sequence of intervals in a that contain
either laminar behavior, where a fixed point is ultimately
‘attracting,  or persistent oscillatory and/or chaotic
behavior. Let~Ij = [aj,aj+1] be the jth interval. 1If oy is
‘the point where the first' Hopf bifurcation occurs, then
Ip = _[0,0:1]. A static pitchfork-like steady~-state bifurca-
tion occurs at a = 4 < oy for the K-V egquation (Fig. la).
For j even, Ij is characterized~by the ultimate decay to a
globally attracting fixed point uq(x), q= (i/2) +1, j > 2.
These fixed points have most of their energy concentrated in
the g-th mode. The higher harmonics appear with exponen-
tially decreasing energy and the fixed point has a lacunary
Fourier expansion: ‘

~

cos 2gx

= +
ug(x) z:tlq cos gx € azq | (2.7)
+ e2 a, _ cos 3gx + + el a  cos ngx +
- ®3q AR - “ng- ey
where g = j/2+1. Numerically, we have found that atlq is 0O(1)

and ¢ 107". We call these sinks associated with Ij, 3
even, cellular states. When the Fourier expansion (2.7) of a
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Fig. la. Stable solution of the K-S equation.
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Fig. 1b. Stable solutions of the K-V ‘equation.

Fig. 1. The stable solution manifolds for the K-S (Fig. 1la)
and K-V (Fig. 1b) equation_have a simple structure when a is

small.
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cellular state is dominated by the g-th mode, we call it a
g-modal cellular state.

The relaminarization 1ntervals IJ, j even, are consistent
with .experiments at small and moderate Reynolds numbers [32].
Moreover, as j and a increase, the ultimate decay follows
long periods of transient chaos. Transient chaos is observed
in both the K-S and K-V equations beginning at the interval
I 4 provided enough modes are excited in the initial data.
Moreover, as o increases, the mean lifetime of transient
chaos increases exponentially in ..  when the fractal
dimension of the wuniversal attractor, X, for the flow is
large, . dimf(X) =z 10, this growth 'mr.ik,es transient - chaotic
intervals undistinguishable, in practice, from chaotic
intervals in the strongly chaotic regimes.

When j  is odd, the .intervals Ij have persistent .
oscillatory and/or chaotic behavior. For moderate values of
a (up to about 17), the quasi-periodic. and/or chaotic
behavior reflects a competition between the previous j+1/2
cellular state and the j+3/2 cellular state. This
competition <creates a complex interplay between temporal
chaos and spatial coherence. In some sense, the (low-
dimensional) temporal chaos in Ij corresponds to adjustment
from one (low-dimensional) space pattern to the next one.

I1I. ‘I’HE K-V EQUATION BIFURCATION INTERVALS
In this section, we describe the behavior of: the

solutions to the K-V equation for parameter values in the
intervals I, 0 < 3j <5, 0<a<50 (0 < L < 3.53). Within
these intervals we see canonical vector field bifurcations
~leading to gquasi-periodic motion and chaos. By systemat-
ically varying the initial conditions and «, we have
constructed the preliminary bifurcation catalogue of the
attractors to Egq. (2.6) shown ir; Figs. 1b and 2b.

These windows (interwvals Ij) are much narrower than the
corresponding ones for the K-S equation (Figs. la and 2a).
Indeed, at a = 50, we are still in the quasi-periodic window
13 for the K-S equation, but K-V has reached the end of the
oscillatory . window IS’ The term (u ) controls . the blowup,

but the nonlinearity (u.ux)x in the vK-V equation accelerates
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the transition to chaos. Within each window, the bifurcation
sequences for the K-S and K-V equations are generically
similar: homoclinic loops,  perturbed transverse homoclinic
orbits and low-dimensional tori which eventually break up.
In addition, here 1is a wealth of reverse bifurcations
attractors that alternatively destabilize and restabilize
again at some larger a. - ‘

In the discussion below, the "energy" is the integral of
(ux)2 and the "“energy in mode k" is the modulus of the kth
Fourier coefficient. ' |

The first bifurcation in the K-V equation is a classical
pitchfork - bifurcation at a = 4 (L = 1) into  a unimodal
cellular state. At a = 6.50, it bifurcates into a traveling
wave {(a similar phenomenon occurs in K=S at o = 13.0). At
oa = 8.60, the traveling unimodal wave undergoes Hopf
bifurcation into an invariant circle. Surprisingly, this
first sequence does not lead to further bifurcations and
transition to chaos. The - invariant circle remains
attracting, yet . a hyperbolic bimodal cellular point
(repelling) is evident near a & 10. At a = 12 it undergoes a
reverse homoclinic bifurcation [20] and the window Il‘,
8.60 £ a £ 12, ends.  In the interval 12, 12 < a < 15.18, the
bimodal fixed point, ﬁz(x,a), is globally attracting.

The 'second oscillatory window I, begins at o = 15.18
where ?12 undergoes a nonclassical Hopf bifurcation that
breaks the symmetry [18]. That is, the bifurcated circle
breaks the group - invariance u(x,t) - u(-x,t) of K-V.
Tracking this torus Ti (circle) by numerical continuation, we
observed its bifurcation into T2 (a two-dimensional torus)
near o = 16.20, with quasi-periodic dynamics (two incommen-
surate frequencies). ‘This T, becomes metastable . at
a = 16.70. ' o

The attractor Tl +.T2 is globally attracting for
15.18 < o < 16.455, but has only a 1limited basin of
attraction for 16.455 < a < 16.70. At a = 16.455, the
bimodal cellular state ﬁz undergoes its segond reverse
bifurcation and becomes a sink. It has a small basin of
attraction on 16.455 < a < 16.65 where
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~

u, = 5.9cos2x + 0.98cos4x + 0.09cosbx + ... | (3.1)

{(at o = 16.455) ié ~stable with respect to small perturba-
tions. The interval 16.455 £ a £ 16.70 is the first
occurrence of coexisting attractors.

At «a =fv16.65, a homoclinic loop appearsl with an infinite
‘period orbit as ﬁz ‘undergoes its second (direct) homoclinic
bifurcation [19]. As a increases, 'ﬁz'_- remains hyperbolic,
"with a nearly periodic, perturbed homoclinic orbit. The
numerical example in Fig. 3 ‘illustrates this for a = 22,
uo(x) = 6cos2x + cos4x. . The. solution  orbit spe'nds' a
substantial time in a neighborhood of the saddle point

ﬁz(x) = 4.5c0os2x + 1.15cos4x + 0.125c086X + ... . (3.2)

The motion around the loop is triggered by a sensitive
nonlinear exchange of energy between the odd and even modes.
In Fig. 3b, the energy in Mode 1 bursts quickly from 1077 to
10 as the solution traverses around the {perturbed)
homoclinic loop. A corresponding dip is observed in the
energy of Mode 2 (Fig. 3c).

These calculations were done with an error tolerance of
10”7 per unit timestep. When we relaxed the precision of the
numerical integrations above 10'6, the homoclinic 1loop
disappeared and the solution locked into the numerically
attracting bimodal fixed point. The high precision was
_necessary to trlgger the energy feedback into the odd modes.
Additional calculations with an error tolerance of 10 =10 -
comfirmed that the homoclinic loop was not an artifact. This

-8

is one example (among many) that alerted us to the extreme
sensitivity of the oscillatory solutions to the precision of
the numerical method. .

Similar dynamics associated with the stable and unstable
manifolds of ?'12 are observed until o = 26, where a stable
traveling wave tra:.n appears as a global attractor. This
wave traln is not related to either the previous bimodal
point or to the trimodal cellular state, which is a global
sink in I,. It seems to be a special orbit on the metastable
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Fig. 3a. The energy of the solution has periodic bursts on
the hOmOCllnlC loop (K=V, a = 27).
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Fig. 3b. The energy in the first mode decays almost to =zero
‘near the bimodal saddle p01nt.
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ENERGY IN MODE 2
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| - I | .
0.0 TIME 2.1

Fig. 3c. The energy in the second mode is nearly constant
between the bursts. The saddle point has energy only 1n the
even modes.

torus T,. Its Fourier series expansion is not lacunary and a
typical profile has two humps, a large one and a small one.
At a = 27, the wave train undergoes Hopf bifurcation and

‘becomes a strongly beating wave. The os‘cillati'ons in the
energy of  the. beatlng wave are ev:Ldent in Fig. 4a (a = 27,
0(x) = cosx + sinx + cost + s:.n2x + cos3x + sin3x + cos4x +
sin4x). The contour levels of the solutlon in Fig. 4b show

the beating wave traln drlftlng alternatlvely from left to
right. : o

The window IB‘ends at a = 28, »where the trimodal cellular
state ' ' '

?13 = 5.9 cos3x + 0.8coséx + ... o : (3.3)
becomes a global sink. At a« = 28, dinitial conditions were
imposed in which the first six cosine and sine modes were
excited to a level of 0(1); the solution displayed persistent
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Fig. 4a. The traveling wave undergoes a Hopf bifurcation at
o = 27 (K-V) into a beating wave train.
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Fig. 4b. The contour plot of the beating wave solution shows
it drifting in alternate directions.
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near-chaotic behavior before crashing abruptly into 33. This
type of transient behavior at the onset of an even-numbered
interval heralds the transient chaos observed for large a's.
The window I, spans 28 < o < 34.

These solutions linger in the background at higher «.
The two-humped structure observed for 26 < a < 27 reoccurs in
the midst of the next oscillatory interval 15 (see Fig. 2b).
At o = 36, a steady, nondrifting, nonbeating fixed point
reappears as a global attractor, with a similar two-humped
profile (see Fig. 5). This strange fixed point |has
substantial energy in the first six modes and persists as a
global sink until « = 42, where it undergoes another Hopf
bifurcation. The new Torus T; quickly evolves into T, and
breaks down into near-chaotic dynamics. The transition into
Ig (54) occurs near o = 50.

-1450

il b sl el
|

u(x,t)

Iillilill
l

ko | | o | : | | |

Fig. 5. This two-humped fixed point appears at o = 36.
Glimpses of it also appear in the traveling and beating waves
at 26 <cama< 28
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At o = 34, the trimodal cellular state EB (a global sink
in 14) bifurcates. The bifurcation is neither of Hopf type,
nor through a classical homoclinic loop. This is explored in
Eigii6 = (a =34 u, = 6cos3x + 0.8cos6x + O0.lsinx). At
roughly periodic intervals, the orbit bursts away on the

unstable manifold of u,, intermittently puffs into chaos at a

much lower energy levgl, and then spirals back around the
hyperbolic point §3. Fig. 6b confirms that the energy in the
first mode is low during the small oscillations around the
spiral hyperbolic point ﬁ3 and is much higher during the
chaotic bursts. The energy in the third mode, Fig. 6c, is
the - mirror image of Fig. 6b. : It oscillates in -‘a 'small
neighborhood of 5.9, then bursts away from GS into a chaotic
excursion. This behavior persists until a = 36 and has many
of the characteristics of a perturbed Shilnikov homoclinic
loop [19] associated with a spiral hyperbolic point. To our
knowledge, this is the first time it has been observed in a
parabolic PDE. This behavior has also been observed and
proved to exist for traveling wave solutions of the
Fitz Hugh-Nagumo equation [25].
140

ENERGY

| | i 1 | | |
&0 i i ] | i | 1

0 : Lol M E

Fig. 6a. The energy has near-periodic bursts on the
homoclinic loop and then spirals around the hyperbolic point
(Shilnikov homoclinic locop, o« = 34, K-V).
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Fig. 6b. The energy in the first mode is Ilow during the
small oscillations near the trimodal hyperbolic point. :
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Fig. 6c. The energy in the third mode is high in - the
neighborhood of the spiral hyperbolic point, whose components
contain energy only in the harmonics of three.
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The bifurcations of the K-V equaf:ion, unraveled in this
section, occur on low-dimensional inertial manifolds.
Multiple forward and reverse bifurcations of several cellular
fixed points are entangled in a web of tori, together with
hyperbolic points. For these regimes, we conjecture that it
may be possible . to construct a simple reduced inertial normal
form for the ODEs on the inertial manifold using the unstable
manifolds of u2(x a), 3(x a), and the two-humped strange
fixed point (Fig. 5).

IV. SUMMARY

A low-dlmenSLOnal vector fleld skeleton underp:.ns the
sometimes chaotlc solutlons of the K-S and K-V turbulent
interface ° models. . Thls low-dlmenszl.onal ‘subtle arch:.tecture
is mirrored by repeated blfurcatlons and 1nterm1ttenc1es in
the solution dynam1cs and plays a crucial ‘role 1n brldglng
the gap between strong dynamical chaos and fully developed
turbulence. Current analytic results [6] support the
numerical evidence that this small exotic zoo of hyperbolic
points and tori generates strong chaos in the K-S and K-V
equations. We suspect that the dynamically relevant strange
fixed p01nts w1ll be embedded in a Cantor—llke structure in
space (this has been proved for K-S, a = =, by D. M. Michelson)
and that spatial chaos will intefmingle with temporal chaos
at large values of ‘the bifu:;catidn parameter.
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